

RADICAL-Analytics

[image: Pypi Version]
 [https://pypi.python.org/pypi/radical_analytics][image: License]
 [https://pypi.python.org/pypi/radical_analytics/][image: Documentation Status]
 [http://radicalanalytics.readthedocs.io/en/latest/?badge=latest]RADICAL-Analytics [https://github.com/radical-cybertools/radical.analytics]
(RA) is a library implemented in Python to support the analysis of traces
produced by RADICAL-Cybertools [https://radical-cybertools.github.io/]
(RCT). Each RCT has a set of entities and a set of events associated to those
entities. Each component of each RCT tool records a set of events at runtime,
enabling post-mortem analysis.

Currently, RA supports two RCT, RADICAL-Pilot [https://github.com/radical-cybertools/radical.pilot] (RP) and RADICAL-EnTK [https://github.com/radical-cybertools/radical.entk] (EnTK), and three
event-based analyses: duration, concurrency and utilization. All the
analyses work with pairs of arbitrarily-defined events. Duration analysis
calculates the amount of time spent by one or more entities between two events.
Concurrency analysis shows between which events one or more entity was in a
given interval of time, and utilization analysis shows for how much time each
available resource was used during runtime.

RA enables developing statistical analysis of experimental data, collected via
multiple experimental runs. For example, RA supports calculation of averages,
spread, and skew among durations of repeated runs, to compare groups of diverse
types of entities, association among variables, and analysis of dependent
variables. RA also enables introspecting the behavior of RP or EnTK, measuring
and characterizing percentage of resource utilization, information flow, and
distribution patterns.

RA supports the development and experimental analysis of the
papers published [http://radical.rutgers.edu/publications/] by RADICAL [http://radical.rutgers.edu/] at Rutgers University.

	repository: https://github.com/radical-cybertools/radical.analytics

	issues: https://github.com/radical-cybertools/radical.analytics/issues

	Introduction
	Using RA

	Fundamental Notions

	Types of Analysis

	Types of Measure

	Installation
	Virtual Environment

	Troubleshooting

	Plotting
	Matplotlib

	Plotting for Latex Documents

	Inspection
	Prologue

	Single Session

	Multiple Sessions

	Duration
	Prologue

	Default Durations

	Arbitrary Durations

	Duration Analysis

	Danger of Duration Analysis

	Distribution of Durations

	Resource Utilization
	Prologue

	Detailed Resource Utilization

	Aggregated Resource Utilization

	Timestamps
	Prologue

	Event Model

	Timestamps analysis

	Concurrency
	Prologue

	Session

	Plotting

	API Reference
	Session

	Entity

	Experiment

	utils

Introduction

RADICAL-Analytics [https://github.com/radical-cybertools/radical.analytics] (RA) is a library implemented in Python to support the analysis of traces produced by RADICAL-Cybertools [https://radical-cybertools.github.io/] (RCT). Using RA requires knowing the architecture and the event model of the chosen RCT tool. Without that knowledge, you will not be able to choose the events that are relevant to your analysis and to understand how the results of your analysis relate to the inner working of the chosen RCT tool.

Depending on the chosen RCT, an understanding of the following document is precondition to the use of RA:

	RP architecture [https://github.com/radical-cybertools/radical.pilot/wiki/Architecture] (outdated as for Aug 2020)

	RP event model [https://github.com/radical-cybertools/radical.pilot/blob/devel/docs/source/events.md]

	EnTK architecture [https://radicalentk.readthedocs.io/en/latest/entk.html#architecture]

	EnTK event model [https://radicalentk.readthedocs.io/en/latest/dev_docs/uml.html#events-recorded]

Note

States are special types of events. Given two states in a sequence <1, 2>, both states are always recorded at runtime and state 1 always precede state 2.

Using RA

RA supports post-mortem analysis:

	Install RA and RADICAL-Pilot [https://github.com/radical-cybertools/radical.pilot] (RP) and/or RADICAL-EnTK [https://github.com/radical-cybertools/radical.entk].

	Write an application in Python to execute a workload (RP) or a workflow (EnTK) on an high-performance computing (HPC) platform.

	Set the environment variable RADICAL_PROFILE to TRUE with the command export RADICAL_PROFILE="TRUE".

	Execute your application.

	Both RP and EnTK write traces (i.e., timestamped sequences of events) to a directory called client sandbox. This directory is created inside the directory from which you executed your application. The name of the client sandbox is a session ID, e.g., rp.session.hostname.username.018443.0002 or en.session.hostname.username.018443.0002.

	Load the session traces in RA by creating an object ra.Session.

	Measure entity-level or session-level durations, concurrency or resource utilization, using RA API.

Fundamental Notions

	Session: set of events generated by a single run of a RP or EnTK application. RA creates an object Session containing all the relevant information about all the events recoded at runtime by RP or EnTK. The Session object contains also information about the execution environment.

	Entity: object exposed by RP or EnTK. Currently, RP exposes two types of entity—Pilot and Task—while EnTK exposes three types of entity—Pipeline, Stage and Task. An instance of an entity type is an actual pilot, task, pipeline, stage or task.

	Describing: session and entity instances can be described by listing their properties. For example, a session instance has properties like list of a type of entity, list of events, list of timestamps for those events. A task instance has proprieties like the events of that specific instance, the timestamps of those specific events.

	Filtering: selecting a subset of properties of a session. This is particularly important when we want to limit an analysis to a specific type of entity. For example, assume that we want to measure the amount of time spent by the tasks waiting to be scheduled. We will want to filter the session so to have only entities of type Task in the session. Then, we will perform our measure only on those entities.

Warning

It is important to stress that description and filtering are performed on instances of entities. This means that if we filter for, say, the event DONE and all the tasks have failed, RA will return an empty list as none of task instances will have the event DONE as their property.

Types of Analysis

RA enables both local and global analyses. Local analyses pertain to a single instance of an entity. Currently, RP supports two entities (Pilot and Task) and EnTK supports three entities (Pipeline, Stage and Task).

Global analyses pertain to a set of entities, including all the entities of a run. For example, a very common global analysis consists of measuring the total time all the tasks took to execute. It is fundamental to note that this is NOT the sum of the execution time of all the tasks. Tasks execute with varying degree of concurrency, depending on resource availability.

Types of Measure

RA is agnostic towards the tools used to perform the measurements. For example, RA supports writing stand-alone Python scripts, wranglers or being loaded into a Jupyter Notebook. RA offers classes and methods to perform three types of measures:

	Duration: measures the time spent by an instance of an entity (local analyses) or a set of instances of an entity (global analyses) between two timestamps. For example, staging, scheduling, pre-execute, execute time of one or more tasks; description, submission and execution time of one or more pipelines or stages; and runtime of one or more pilots.

	Concurrency: measures the number of entities of the same type that are between two given events in a time range during the execution. For example, this measures how many tasks where scheduled in a time range. Note that the time range here can be as large as the whole runtime of the application.

	Utilization: measures the amount of time a resource has been provided and consumed. In this context, resource indicates an hardware thread, a CPU core or a GPU. When measured for each resource, we can derive the percentage of utilization of all the resources available.

Note

Utilization is available only for RP as EnTK does not directly utilize resources but delegates that to RP.

Warning

Utilization is still under development so, for example, at the moment it does not offer an easy way to discriminate about types of resources.

Installation

RADICAL-Analytics (RA) is a Python module. RA must be installed in a virtual environment. Site-wide installation will not work.

RA requires the following packages:

	Python >= 3.6

	virtualenv >= 20

	pip >= 20

	radical.utils >= 1.4

RA automatically installs the dependencies above. Besides that, RA requires the manual installation of the RADICAL-Cybertool (RCT) of choice.

Virtual Environment

To install RA in a virtual environment, open a terminal and
run:

virtualenv -p python3 $HOME/ve
source $HOME/ve/bin/activate
pip install radical.analytics

Run the following to make sure that RA is properly installed:

radical-analytics-version

This command should print the version and release numbers of the radical.analytics package. For example:

$ radical-analytics-version
1.6.7

RA installation is now complete.

Troubleshooting

Missing virtualenv

If virtualenv is not installed on your system, you can try the following.

pip install git+https://github.com/pypa/virtualenv.git@master

Installation Problems

Many installation problems boil down to one of two causes: an Anaconda based Python distribution, or an incompatible version of pip/setuptools.

Many recent systems, specifically in the academic community, install Python in its incarnation as Anaconda Distribution. RA is not yet able to function in that environment. While support of Anaconda is planned in the near future, you will have to revert to a ‘normal’ Python distribution to use RADICAL-Analytics.

Python supports a large variety of module deployment paths: easy_install, setuptools and pip being the most prominent ones for non-compilable modules. RA only supports pip.

Reaching out to the RADICAL devel team

If you encounter any issue, please do not hesitate to contact us by opening an issue at https://github.com/radical-cybertools/radical.analytics/issues.

Plotting

RADICAL-Analytics does not provide plotting primitives. Instead, it offers helper methods that can be used with 3rd party plotting libraries.

Matplotlib

RADICAL-Analytics provides a style for Matplotlib. Loading it guarantees an uniform look&feel across plots. The style is located at styles/radical_mpl.txt.

Loading RADICAL-Analytics Style

import matplotlib.pyplot as plt
import radical.analytics as ra

plt.style.use(ra.get_mplstyle("radical_mpl")

Default Color Cycler of RADICAL-Analytics Style

01. #1a80b2
02. #ff801a
03. #339933
04. #cc3333
05. #9966b2

 Inspection

Inspection

RADICAL-Analytics enables deriving information about RCT sessions, pilots and tasks. For example, session ID, number of tasks, number of pilots, final state of the tasks and pilots, CPU/GPU processes for each task, etc. That information allows to derive task requirements and resource capabilities, alongside the RCT configuration parameters used for a session.

Prologue

Load the Python modules needed to profile and plot a RADICAL-Cybertool (RCT) session.

[1]:

import os
import tarfile

import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker

import radical.utils as ru
import radical.pilot as rp
import radical.entk as re
import radical.analytics as ra

Load the RADICAL Matplotlib style to obtain viasually consistent and publishable-qality plots.

[2]:

plt.style.use(ra.get_mplstyle('radical_mpl'))

Usually, it is useful to record the stack used for the analysis.

Note: The analysis stack might be different from the stack used to create the session to analyze. Usually, the two stacks must have the same minor release number (Major.Minor.Patch) in order to be compatible.

[3]:

! radical-stack

 python : /home/docs/checkouts/readthedocs.org/user_builds/radicalanalytics/envs/stable/bin/python3
 pythonpath :
 version : 3.9.15
 virtualenv :

 radical.analytics : 1.34.0-v1.34.0@HEAD-detached-at-0b58be0
 radical.entk : 1.33.0
 radical.gtod : 1.20.1
 radical.pilot : 1.34.0
 radical.saga : 1.34.0
 radical.utils : 1.33.0

Single Session

Name and location of the session we profile.

[4]:

sidsbz2 = !find sessions -maxdepth 1 -type f -exec basename {} \;
sids = [s[:-8] for s in sidsbz2]
sdir = 'sessions/'

Unbzip and untar the session.

[5]:

sidbz2 = sidsbz2[0]
sid = sidbz2[:-8]
sp = sdir + sidbz2

tar = tarfile.open(sp, mode='r:bz2')
tar.extractall(path=sdir)
tar.close()

Create a ra.Session object for the session. We do not need EnTK-specific traces so load only the RP traces contained in the EnTK session. Thus, we pass the 'radical.pilot' session type to ra.Session.

Warning: We already know we need information about pilots and tasks. Thus, we save in memory two session objects filtered for pilots and tasks. This might be too expensive with large sessions, depending on the amount of memory available.

Note: We save the ouput of ra.Session in capt to avoid polluting the notebook with warning messages.

[6]:

%%capture capt

sp = sdir + sid

session = ra.Session(sp, 'radical.pilot')
pilots = session.filter(etype='pilot', inplace=False)
tasks = session.filter(etype='task' , inplace=False)

Information about session that is commonly used when analyzing and plotting one or more RCT sessions.

[7]:

Session info
sinfo = {
 'sid' : session.uid,
 'hostid' : session.get(etype='pilot')[0].cfg['hostid'],
 'cores_node': session.get(etype='pilot')[0].cfg['resource_details']['rm_info']['cores_per_node'],
 'gpus_node' : session.get(etype='pilot')[0].cfg['resource_details']['rm_info']['gpus_per_node'],
 'smt' : session.get(etype='pilot')[0].cfg['resource_details']['rm_info']['threads_per_core']
}

Pilot info (assumes 1 pilot)
sinfo.update({
 'pid' : pilots.list('uid'),
 'npilot' : len(pilots.get()),
 'npact' : len(pilots.timestamps(state='PMGR_ACTIVE')),
})

Task info
sinfo.update({
 'ntask' : len(tasks.get()),
 'ntdone' : len(tasks.timestamps(state='DONE')),
 'ntcanceled': len(tasks.timestamps(state='CANCELED')),
 'ntfailed' : len(tasks.timestamps(state='FAILED')),
})

Derive info (assume a single pilot)
sinfo.update({
 'pres' : pilots.get(uid=sinfo['pid'])[0].description['resource'],
 'ncores' : pilots.get(uid=sinfo['pid'])[0].description['cores'],
 'ngpus' : pilots.get(uid=sinfo['pid'])[0].description['gpus']
})
sinfo.update({
 'nnodes' : int(sinfo['ncores']/sinfo['cores_node'])
})

sinfo

[7]:

{'sid': 'rp.session.mosto.mturilli.019432.0003',
 'hostid': 'mosto',
 'cores_node': 64,
 'gpus_node': 8,
 'smt': 1,
 'pid': ['pilot.0000'],
 'npilot': 1,
 'npact': 1,
 'ntask': 2048,
 'ntdone': 2048,
 'ntcanceled': 0,
 'ntfailed': 0,
 'pres': 'local.localhost',
 'ncores': 512,
 'ngpus': 64,
 'nnodes': 8}

Information about tasks that is commonly used when analyzing and plotting one or more RCT sessions.

Note: we use ra.entity.description to get each task description as a dictionary. We then select the keys of that dictionary that contain the task requirements. More keys are available, especially those about staged input/output files.

[8]:

tinfo = []
for task in tasks.get():

 treq = {
 'executable' : task.description['executable'],
 'cpu_process_type' : task.description['cpu_process_type'],
 'cpu_processes' : task.description['cpu_processes'],
 'cpu_thread_type' : task.description['cpu_thread_type'],
 'cpu_threads' : task.description['cpu_threads'],
 'gpu_process_type' : task.description['gpu_process_type'],
 'gpu_processes' : task.description['gpu_processes'],
 'gpu_thread_type' : task.description['gpu_thread_type'],
 'gpu_threads' : task.description['gpu_threads']
 }

 if not tinfo:
 treq['n_of_tasks'] = 1
 tinfo.append(treq)
 continue

 for i, ti in enumerate(tinfo):
 counter = ti['n_of_tasks']
 ti.pop('n_of_tasks')

 if ti == treq:
 counter += 1
 tinfo[i]['n_of_tasks'] = counter
 else:
 treq['n_of_tasks'] = 1
 tinfo.append(treq)
tinfo

[8]:

[{'executable': '/home/mturilli/github/radical.analytics/docs/source/bin/radical-pilot-hello.sh',
 'cpu_process_type': '',
 'cpu_processes': 0,
 'cpu_thread_type': '',
 'cpu_threads': 0,
 'gpu_process_type': '',
 'gpu_processes': 0,
 'gpu_thread_type': '',
 'gpu_threads': 0,
 'n_of_tasks': 2048}]

Multiple Sessions

Unbzip and untar those sessions.

[9]:

for sid in sids:
 sp = sdir + sid + '.tar.bz2'
 tar = tarfile.open(sp, mode='r:bz2')
 tar.extractall(path=sdir)
 tar.close()

Create the session, tasks and pilots objects for each session.

[10]:

%%capture capt

ss = {}
for sid in sids:
 sp = sdir + sid
 ss[sid] = {'s': ra.Session(sp, 'radical.pilot')}
 ss[sid].update({'p': ss[sid]['s'].filter(etype='pilot', inplace=False),
 't': ss[sid]['s'].filter(etype='task' , inplace=False)})

[11]:

for sid in sids:
 ss[sid].update({'sid' : ss[sid]['s'].uid,
 'hostid' : ss[sid]['s'].get(etype='pilot')[0].cfg['hostid'],
 'cores_node': ss[sid]['s'].get(etype='pilot')[0].cfg['resource_details']['rm_info']['cores_per_node'],
 'gpus_node' : ss[sid]['s'].get(etype='pilot')[0].cfg['resource_details']['rm_info']['gpus_per_node'],
 'smt' : ss[sid]['s'].get(etype='pilot')[0].cfg['resource_details']['rm_info']['threads_per_core']
 })

 ss[sid].update({
 'pid' : ss[sid]['p'].list('uid'),
 'npilot' : len(ss[sid]['p'].get()),
 'npact' : len(ss[sid]['p'].timestamps(state='PMGR_ACTIVE'))
 })

 ss[sid].update({
 'ntask' : len(ss[sid]['t'].get()),
 'ntdone' : len(ss[sid]['t'].timestamps(state='DONE')),
 'ntfailed' : len(ss[sid]['t'].timestamps(state='FAILED')),
 'ntcanceled': len(ss[sid]['t'].timestamps(state='CANCLED'))
 })

 ss[sid].update({'pres' : ss[sid]['p'].get(uid=ss[sid]['pid'])[0].description['resource'],
 'ncores' : ss[sid]['p'].get(uid=ss[sid]['pid'])[0].description['cores'],
 'ngpus' : ss[sid]['p'].get(uid=ss[sid]['pid'])[0].description['gpus']
 })

 ss[sid].update({'nnodes' : int(ss[sid]['ncores']/ss[sid]['cores_node'])})

For presentation purposes, we can convert the session information into a DataFrame and rename some of the columns to improve readability.

[12]:

ssinfo = []
for sid in sids:
 ssinfo.append({'session' : sid,
 'resource' : ss[sid]['pres'],
 'cores_node': ss[sid]['cores_node'],
 'gpus_node' : ss[sid]['gpus_node'],
 'pilots' : ss[sid]['npilot'],
 'ps_active' : ss[sid]['npact'],
 'cores' : int(ss[sid]['ncores']/ss[sid]['smt']),
 'gpus' : ss[sid]['ngpus'],
 'nodes' : ss[sid]['nnodes'],
 'tasks' : ss[sid]['ntask'],
 't_done' : ss[sid]['ntdone'],
 't_failed' : ss[sid]['ntfailed']})

df_info = pd.DataFrame(ssinfo)
df_info

[12]:

 Duration

Duration

In RADICAL-Analytics (RA), duration is a general term to indicate a measure of the time spent by an entity (local analyses) or a set of entities (global analyses) between two timestamps. For example, data staging, scheduling, pre-executing, and executing time of one or more tasks; description, submission and execution time of one or more pipelines or stages; and runtime of one or more pilots.

We show two sets of default durations for RADICAL-Pilot (RP) and how to define arbitrary durations, depending on the specifics of a given analysis. We then see how to plot the most common durations

Prologue

Load the Python modules needed to profile and plot a RADICAL-Cybertool (RCT) session.

[1]:

import os
import tarfile

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker

import radical.utils as ru
import radical.pilot as rp
import radical.analytics as ra

from radical.pilot import states as rps

Load the RADICAL Matplotlib style to obtain viasually consistent and publishable-qality plots.

[2]:

plt.style.use(ra.get_mplstyle('radical_mpl'))

Usually, it is useful to record the stack used for the analysis.

Note: The analysis stack might be different from the stack used to create the session to analyze. Usually, the two stacks must have the same minor release number (Major.Minor.Patch) in order to be compatible.

[3]:

! radical-stack

 python : /home/docs/checkouts/readthedocs.org/user_builds/radicalanalytics/envs/stable/bin/python3
 pythonpath :
 version : 3.9.15
 virtualenv :

 radical.analytics : 1.34.0-v1.34.0@HEAD-detached-at-0b58be0
 radical.entk : 1.33.0
 radical.gtod : 1.20.1
 radical.pilot : 1.34.0
 radical.saga : 1.34.0
 radical.utils : 1.33.0

Default Durations

Currently, we offer a set of default durations for pilot and task entities of RP.

[4]:

pd.DataFrame(ra.utils.tabulate_durations(rp.utils.PILOT_DURATIONS_DEBUG))

[4]:

 Resource Utilization

Resource Utilization

RADICAL-Analytics (RA) allows to calculate resource utilization for single and multiple RADICAL-Pilot (RP) sessions. Currently, RA supports CPU and GPU resources but in the future may support also RAM and I/O.

Resource utilization is expressed as the amount of time for which each task and pilot utilized available resources. For example, task_000000 may have used 6 GPUs and 1 core for 15 minutes, and pilot_0000 may have utilized (better, held) all the available resources for 1 hour.

RA can further characterize resource utilization by differentiating among the state in which each task and pilot were when utilizing (or holding) available resources. For example, pilot_0000 may have held all the available resources for 5 minutes while bootstrapping or a variable amount of resources while scheduling each task. Similarly, tasks may held resources while being in a pre_execution or cmd_execution state.

Calculating resource utilization for all the entities and all their states is computationally expensive: given a 2020 laptop with 8 cores and 32GB of RAM, RA takes ~4 hours to plot the resource utilization of 100,000 heterogeneous tasks executed on a pilot with 200,000 CPUs and 24,000 GPUs. For sessions with 1M+ tasks, RA cannot be utilized to plot completed resource utilization in a reasonable amount of time.

Thus, RA offers two ways to compute resource utilization: fully detailed and aggregated. In the former, RA calculates the utilization for each core (e.g., core and GPU); in the latter, RA calculates the aggregated utilization of the resources over time, without mapping utilization over resource IDs. Aggregated utilization is less computationally intensive and it has been used to plot runs with 10M+ tasks.

Prologue

Load the Python modules needed to profile and plot a RP session.

[1]:

import os
import glob
import tarfile

import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker

import radical.utils as ru
import radical.pilot as rp
import radical.entk as re
import radical.analytics as ra

1681200946.455 : radical.analytics : 828 : 140663965345600 : INFO : radical.analytics version: 1.20.0-v1.20.0-26-g84002ce@docs-fix

Load the RADICAL Matplotlib style to obtain viasually consistent and publishable-qality plots.

[2]:

plt.style.use(ra.get_mplstyle('radical_mpl'))

Usually, it is useful to record the stack used for the analysis.

Note: The analysis stack might be different from the stack used to create the session to analyze. Usually, the two stacks must have the same minor release number (Major.Minor.Patch) in order to be compatible.

[3]:

! radical-stack

1681200947.153 : radical.analytics : 862 : 140648076404544 : INFO : radical.analytics version: 1.20.0-v1.20.0-26-g84002ce@docs-fix

 python : /mnt/home/merzky/radical/radical.analytics.devel/ve3/bin/python3
 pythonpath :
 version : 3.10.11
 virtualenv : /mnt/home/merzky/radical/radical.analytics.devel/ve3

 radical.analytics : 1.20.0-v1.20.0-26-g84002ce@docs-fix
 radical.entk : 1.30.0
 radical.gtod : 1.20.1
 radical.pilot : 1.21.0
 radical.saga : 1.22.0
 radical.utils : 1.22.0

Detailed Resource Utilization

Given a RP session, RA helper functions take one resource type as input and return utilization, patches and legends for that type of resource. Plotting multiple types of resources requires creating separate plots. If needed, plots can be stacked, maintaining their time alignment. Here the default workflow to create a detailed utilization plot, with stacked plots for CPU and GPU resources.

Metrics

Define the metrics you want RA to use to calculate resource utilization of task(s) and pilot(s). A metric is used to measure the amount of time for which a set of resource was used by an entity in a specific state. The list of all available durations is in rp.utils.PILOT_DURATIONS; rp.utils.TASK_DURATIONS_DEFAULT; rp.utils.TASK_DURATIONS_APP; rp.utils.TASK_DURATIONS_PRTE; and rp.utils.ASK_DURATIONS_PRTE_APP. Each metric has a label—the name of the metric—, a list of
durations, and a color used when plotting that metric.

One can use an arbitrary number of metrics, depending on the information that the plot needs to convey. For example, using only ‘Exec Cmd’ will show the time for which each resource was utilized to execute a given task. The rest of the plot will be white, indicating that the resources where otherwise utilized or idling.

Barring exceptional cases, colors should not be changed when using RA for RADICAL publications.

[4]:

 metrics = [
 ['Bootstrap', ['boot', 'setup_1'] , '#c6dbef'],
 ['Warmup' , ['warm'] , '#f0f0f0'],
 ['Schedule' , ['exec_queue','exec_prep', 'unschedule'] , '#c994c7'],
 ['Exec RP' , ['exec_rp', 'exec_sh', 'term_sh', 'term_rp'], '#fdbb84'],
 ['Exec Cmd' , ['exec_cmd'] , '#e31a1c'],
 ['Cooldown' , ['drain'] , '#addd8e']
]

Sessions

Name a location of all the sessions of the experiment.

[5]:

sessions = glob.glob('**/rp.session.*.tar.bz2')
sessions

[5]:

['sessions/rp.session.mosto.mturilli.019432.0005.tar.bz2',
 'sessions/rp.session.mosto.mturilli.019432.0003.tar.bz2',
 'sessions/rp.session.mosto.mturilli.019432.0002.tar.bz2',
 'sessions/rp.session.mosto.mturilli.019432.0004.tar.bz2']

Create a ra.Session object for the session. We do not need EnTK-specific traces so load only the RP traces contained in the EnTK session. Thus, we pass the 'radical.pilot' session type to ra.Session.

Warning: We already know we need information about pilots and tasks. Thus, we save in memory two session objects filtered for pilots and tasks. This might be too expensive with large sessions, depending on the amount of memory available.

Note: We save the ouput of ra.Session in capt to avoid polluting the notebook with warning messages.

[6]:

%%capture capt

ss = {}
sids = list()
for session in sessions:
 ra_session = ra.Session(session, 'radical.pilot')
 sid = ra_session.uid
 sids.append(sid)
 ss[sid] = {'s': ra_session}
 ss[sid].update({'p': ss[sid]['s'].filter(etype='pilot', inplace=False),
 't': ss[sid]['s'].filter(etype='task' , inplace=False)})

Derive the information about each session we need to use in our plots.

[7]:

for sid in sids:

 print(sid)
 ss[sid].update({'cores_node': ss[sid]['s'].get(etype='pilot')[0].cfg['resource_details']['rm_info']['cores_per_node'],
 'pid' : ss[sid]['p'].list('uid'),
 'ntask' : len(ss[sid]['t'].get())
 })

 ss[sid].update({'ncores' : ss[sid]['p'].get(uid=ss[sid]['pid'])[0].description['cores'],
 'ngpus' : ss[sid]['p'].get(uid=ss[sid]['pid'])[0].description['gpus']
 })

 ss[sid].update({'nnodes' : int(ss[sid]['ncores']/ss[sid]['cores_node'])})

rp.session.mosto.mturilli.019432.0005
rp.session.mosto.mturilli.019432.0003
rp.session.mosto.mturilli.019432.0002
rp.session.mosto.mturilli.019432.0004

When plotting resource utilization with a subplot for each session, we want the subplots to be ordered by number of nodes. Thus, we sort sids for number of cores.

[8]:

 sorted_sids = [s[0] for s in sorted(ss.items(), key=lambda item: item[1]['ncores'])]

Experiment

Construct a ra.Experiment object and calculate the starting point of each pilot in order to zero the X axis of the plot. Without that, the plot would start after the time spent by the pilot waiting in the queue. The experiment object exposes a method to calculate the consumption of each resource for each entity and metric.

[9]:

%%capture capt

exp = ra.Experiment(sessions, stype='radical.pilot')

Use ra.Experiment.utilization() to profile GPU resources utilization. Use the metrics defined above and all the sessions of the experiment exp.

[10]:

Type of resource we want to plot: cpu or gpu
rtypes=['cpu', 'gpu']

provided, consumed, stats_abs, stats_rel, info = exp.utilization(metrics=metrics, rtype=rtypes[1])

Plotting GPU Utilization

We now have everything we need to plot the detailed GPU utilization of the experiment with Matplotlib.

[11]:

sessions you want to plot
nsids = len(sorted_sids)

Get the start time of each pilot
p_zeros = ra.get_pilots_zeros(exp)

Create figure and 1 subplot for each session
Use LaTeX document page size (see RA Plotting Chapter)
fwidth, fhight = ra.get_plotsize(516, subplots=(1, nsids))
fig, axarr = plt.subplots(1, nsids, sharex='col', figsize=(fwidth, fhight))

Avoid overlapping between Y-axes ticks and sub-figures
plt.subplots_adjust(wspace=0.45)

Generate the subplots with labels
i = 0
j = 'a'
legend = None
for sid in sorted_sids:

 # Use a single plot if we have a single session
 if nsids > 1:
 ax = axarr[i]
 ax.set_xlabel('(%s)' % j, labelpad=10)
 else:
 ax = axarr

 # Plot legend, patched, X and Y axes objects (here we know we have only 1 pilot)
 pid = ss[sid]['p'].list('uid')[0]
 legend, patches, x, y = ra.get_plot_utilization(metrics, consumed, p_zeros[sid][pid], sid)

 # Place all the patches, one for each metric, on the axes
 for patch in patches:
 ax.add_patch(patch)

 # Title of the plot. Facultative, requires info about session (see RA Info Chapter)
 # NOTE: you may have to change font size, depending on space available
 ax.set_title('%s Tasks - %s Nodes' % (ss[sid]['ntask'], int(ss[sid]['nnodes'])))

 # Format axes
 ax.set_xlim([x['min'], x['max']])
 ax.set_ylim([y['min'], y['max']])
 ax.yaxis.set_major_locator(mticker.MaxNLocator(5))
 ax.xaxis.set_major_locator(mticker.MaxNLocator(5))

 i = i+1
 j = chr(ord(j) + 1)

Add legend
fig.legend(legend, [m[0] for m in metrics],
 loc='upper center', bbox_to_anchor=(0.5, 1.25), ncol=6)

Add axes labels
fig.text(0.05, 0.5, '%ss' % rtypes[1].upper(), va='center', rotation='vertical')
fig.text(0.5 , -0.2, 'Time (s)', ha='center')

[11]:

Text(0.5, -0.2, 'Time (s)')

[image: _images/utilization_21_1.png]

Plotting CPU/GPU Utilization

One plot for each type of resource, stacked for each session. For 4 sessions, we have 8 subplots, stackes in two raws, each with 4 columns.

[12]:

sessions you want to plot
nsids = len(sorted_sids)

Create figure and 1 subplot for each session
Use LaTeX document page size (see RA Plotting Chapter)
fwidth, fhight = ra.get_plotsize(516, subplots=(1, nsids))
fig, axarr = plt.subplots(2, nsids, sharex='col', figsize=(fwidth, fhight))

Avoid overlapping between Y-axes ticks and sub-figures
plt.subplots_adjust(wspace=0.45)

Generate the subplots with labels

legend = None
for k, rtype in enumerate(rtypes):

 _, consumed, _, _, _ = exp.utilization(metrics=metrics, rtype=rtype)

 j = 'a'
 for i, sid in enumerate(sorted_sids):

 # we know we have only 1 pilot
 pid = ss[sid]['p'].list('uid')[0]

 # Plot legend, patched, X and Y axes objects
 legend, patches, x, y = ra.get_plot_utilization(metrics, consumed,
 p_zeros[sid][pid], sid)

 # Place all the patches, one for each metric, on the axes
 for patch in patches:
 axarr[k][i].add_patch(patch)

 # Title of the plot. Facultative, requires info about session (see RA
 # Info Chapter). We set the title only on the first raw of plots
 if rtype == 'cpu':
 axarr[k][i].set_title('%s Tasks - %s Nodes' % (ss[sid]['ntask'],
 int(ss[sid]['nnodes'])))

 # Format axes
 axarr[k][i].set_xlim([x['min'], x['max']])
 axarr[k][i].set_ylim([y['min'], int(y['max'])])
 axarr[k][i].yaxis.set_major_locator(mticker.MaxNLocator(4))
 axarr[k][i].xaxis.set_major_locator(mticker.MaxNLocator(4))

 if rtype == 'cpu':
 # Specific to Summit when using SMT=4 (default)
 axarr[k][i].yaxis.set_major_formatter(
 mticker.FuncFormatter(lambda z, pos: int(z/4)))

 # Y label per subplot. We keep only the 1st for each raw.
 if i == 0:
 axarr[k][i].set_ylabel('%ss' % rtype.upper())

 # Set x labels to letters for references in the paper.
 # Set them only for the bottom-most subplot
 if rtype == 'gpu':
 axarr[k][i].set_xlabel('(%s)' % j, labelpad=10)

 # update session id and raw identifier letter
 j = chr(ord(j) + 1)

Add legend
fig.legend(legend, [m[0] for m in metrics],
 loc='upper center', bbox_to_anchor=(0.5, 1.25), ncol=6)

Add axes labels
fig.text(0.5 , -0.2, 'Time (s)', ha='center')

[12]:

Text(0.5, -0.2, 'Time (s)')

[image: _images/utilization_23_1.png]

Aggregated Resource Utilization

This method is still under development and, as such, it requires to explicitly define the durations for each metric. Defaults will be included in rp.utils as done with the detailed plotting.

Metrics

The definition of metrics needs to be accompanied by the explicit definition of the event transitions represented by each metric. RP transitions are documented here [https://github.com/radical-cybertools/radical.pilot/blob/devel/docs/source/events.md%3E] but default values will be made available at a later time.

[13]:

pick and choose what resources to plot (one sub-plot per resource)
resrc = ['cpu', 'gpu']

pick and choose what contributions to plot
metric , line color, alpha, fill color, alpha
metrics = [['bootstrap', ['#c6dbef' , 0.0 , '#c6dbef' , 1]],
 ['exec_cmd' , ['#e31a1c' , 0.0 , '#e31a1c' , 1]],
 ['schedule' , ['#c994c7' , 0.0 , '#c994c7' , 1]],
 ['exec_rp' , ['#fdbb84' , 0.0 , '#fdbb84' , 1]],
 ['term' , ['#addd8e' , 0.0 , '#addd8e' , 1]],
 ['idle' , ['#f0f0f0' , 0.0 , '#f0f0f0' , 1]]]

transition events for pilot, task, master, worker, request
#
event : resource transitions from : resource transitions to
#
p_trans = [[{1: 'bootstrap_0_start'} , 'system' , 'bootstrap'],
 [{5: 'PMGR_ACTIVE'} , 'bootstrap' , 'idle'],
 [{1: 'cmd', 6: 'cancel_pilot'}, 'idle' , 'term'],
 [{1: 'bootstrap_0_stop'} , 'term' , 'system'],
 [{1: 'sub_agent_start'} , 'idle' , 'agent'],
 [{1: 'sub_agent_stop'} , 'agent' , 'term']]

t_trans = [[{1: 'schedule_ok'} , 'idle' , 'schedule'],
 [{1: 'exec_start'} , 'schedule' , 'exec_rp'],
 [{1: 'task_exec_start'} , 'exec_rp' , 'exec_cmd'],
 [{1: 'unschedule_stop'} , 'exec_cmd' , 'idle']]

m_trans = [[{1: 'schedule_ok'} , 'idle' , 'schedule'],
 [{1: 'exec_start'} , 'schedule' , 'exec_rp'],
 [{1: 'task_exec_start'} , 'exec_rp' , 'exec_master'],
 [{1: 'unschedule_stop'} , 'exec_master', 'idle']]

w_trans = [[{1: 'schedule_ok'} , 'idle' , 'schedule'],
 [{1: 'exec_start'} , 'schedule' , 'exec_rp'],
 [{1: 'task_exec_start'} , 'exec_rp' , 'exec_worker'],
 [{1: 'unschedule_stop'} , 'exec_worker', 'idle']]

r_trans = [[{1: 'req_start'} , 'exec_worker', 'workload'],
 [{1: 'req_stop'} , 'workload' , 'exec_worker']]

what entity maps to what transition table
tmap = {'pilot' : p_trans,
 'task' : t_trans,
 'master' : m_trans,
 'worker' : w_trans,
 'request': r_trans}

Session

Pick a session to plot and use the ra.Session object already stored in memory. Also use the ra.Entity object for the pilot of that session. Here we assume we have a session with a single pilot.

[15]:

uid = sids[0]
session = ss[uid]['s']
pilot = ss[uid]['p'].get()[0]

Plotting CPU/GPU Utilization

Stack two plots for the chosen session, one for CPU and one for GPU resources.

[16]:

metrics to stack and to plot
to_stack = [m[0] for m in metrics]
to_plot = {m[0]: m[1] for m in metrics}

Use to set Y-axes to % of resource utilization
use_percent = True

Derive pilot and task timeseries of a session for each metric
p_resrc, series, x = ra.get_pilot_series(session, pilot, tmap, resrc, use_percent)

#plots = # of resource types (e.g., CPU/GPU = 2 resource types = 2 plots)
n_plots = 0
for r in p_resrc:
 if p_resrc[r]:
 n_plots += 1

sub-plots for each resource type, legend on first, x-axis shared
fig = plt.figure(figsize=(ra.get_plotsize(252)))
gs = mpl.gridspec.GridSpec(n_plots, 1)

for plot_id, r in enumerate(resrc):

 if not p_resrc[r]:
 continue

 # create sub-plot
 ax = plt.subplot(gs[plot_id])

 # stack timeseries for each metrics into areas
 areas = ra.stack_transitions(series, r, to_stack)

 # plot individual metrics
 prev_m = None
 lines = list()
 patches = list()
 legend = list()
 for num, m in enumerate(areas.keys()):

 if m not in to_plot:
 if m != 'time':
 print('skip', m)
 continue

 lcol = to_plot[m][0]
 lalpha = to_plot[m][1]
 pcol = to_plot[m][2]
 palpha = to_plot[m][3]

 # plot the (stacked) areas
 line, = ax.step(areas['time'], areas[m], where='post', label=m,
 color=lcol, alpha=lalpha, linewidth=1.0)

 # fill first metric toward 0, all others towards previous line
 if not prev_m:
 patch = ax.fill_between(areas['time'], areas[m],
 step='post', label=m, linewidth=0.0,
 color=pcol, alpha=palpha)

 else:
 patch = ax.fill_between(areas['time'], areas[m], areas[prev_m],
 step='post', label=m, linewidth=0.0,
 color=pcol, alpha=palpha)

 # remember lines and patches for legend
 legend.append(m.replace('_', '-'))
 patches.append(patch)

 # remember this line to fill against
 prev_m = m

 ax.set_xlim([x['min'], x['max']])
 if use_percent:
 ax.set_ylim([0, 110])
 else:
 ax.set_ylim([0, p_resrc[r]])

 ax.set_xlabel('time (s)')
 ax.set_ylabel('%s (%s)' % (r.upper(), '\%'))

 # first sub-plot gets legend
 if plot_id == 0:
 ax.legend(patches, legend, loc='upper center', ncol=4,
 bbox_to_anchor=(0.5, 1.8), fancybox=True, shadow=True)

for ax in fig.get_axes():
 ax.label_outer()

Title of the plot
fig.suptitle('%s Tasks - %s Nodes' % (ss[uid]['ntask'], ss[uid]['nnodes']))

[16]:

Text(0.5, 0.98, '2048 Tasks - 32 Nodes')

[image: _images/utilization_29_1.png]

[]:

 Timestamps

Timestamps

RADICAL-Analytics (RA) enables event-based analyses in which the timestamps recorded in a RADICAL-Cybertools (RCT) session are studied as timeseries instead of durations. Those analyses are low-level and, most of the time, useful to ‘visualize’ the process of execution as it happens in one or more components of the stack.

Warning: Sessions with 100,000+ tasks and resoruces may generate traces with 1M+ events. Depending on the quantity of available memory, plotting that amount of timestamps with RA could not be feasable.

Prologue

Load the Python modules needed to profile and plot a RCT session.

[1]:

import tarfile

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker

import radical.utils as ru
import radical.pilot as rp
import radical.analytics as ra

from radical.pilot import states as rps

Load the RADICAL Matplotlib style to obtain viasually consistent and publishable-qality plots.

[2]:

plt.style.use(ra.get_mplstyle('radical_mpl'))

Usually, it is useful to record the stack used for the analysis.

Note: The analysis stack might be different from the stack used to create the session to analyze. Usually, the two stacks must have the same minor release number (Major.Minor.Patch) in order to be compatible.

[3]:

! radical-stack

 python : /home/docs/checkouts/readthedocs.org/user_builds/radicalanalytics/envs/stable/bin/python3
 pythonpath :
 version : 3.9.15
 virtualenv :

 radical.analytics : 1.34.0-v1.34.0@HEAD-detached-at-0b58be0
 radical.entk : 1.33.0
 radical.gtod : 1.20.1
 radical.pilot : 1.34.0
 radical.saga : 1.34.0
 radical.utils : 1.33.0

Event Model

RCT components have each a well-defined event model:

	RADICAL-Pilot (RP) event model [https://github.com/radical-cybertools/radical.pilot/blob/devel/docs/source/events.md]

	RADICAL-EnsembleToolkit (EnTK) event model [https://radicalentk.readthedocs.io/en/latest/dev_docs/uml.html#dev-docs-events]

Note: RA does not support RADICAL-SAGA.

Each event belongs to an entity and is timestamped within a component. The succession of the same event over time constitutes a time series. For example, in RP the event schedule_ok belongs to a task and is timestamped by AgentSchedulingComponent. The timeseries of that event indicates the rate at which tasks are scheduled by RP.

Timestamps analysis

We use RA to derive the timeseries for one or more events of interest. We then plot each time series singularly or together in the same plot. When plotting the time series of multiple events together, they must all be ordered in the same way. Typically, we sort the entities by the timestamp of their first event.

Here is the RA workflow for a timestamps analysis:

	Go at RADICAL-Pilot (RP) event model [https://github.com/radical-cybertools/radical.pilot/blob/devel/docs/source/events.md], RP state model [https://github.com/radical-cybertools/radical.pilot/wiki/State-Model-Evolution] or RADICAL-EnsembleToolkit (EnTK) event model [https://radicalentk.readthedocs.io/en/latest/dev_docs/uml.html#dev-docs-events] and derive the list of events of interest.

	Convert events and states in RP/RA dict notation.

E.g., a scheduling event and state in RP:

	AGENT_SCHEDULING - picked up by agent scheduler, attempts to assign cores for execution [https://github.com/radical-cybertools/radical.pilot/wiki/State-Model-Evolution]

	AGENT_EXECUTING - picked up by the agent executor and ready to be launched [https://github.com/radical-cybertools/radical.pilot/wiki/State-Model-Evolution]

[4]:

state_sched = {ru.STATE: rps.AGENT_SCHEDULING}
state_exec = {ru.STATE: rps.AGENT_EXECUTING}

	Filter a RCT session for the entity to which the selected event/state belong.

	use ra.entity.timestamps() and the defined event/state to derive the time series for that event/state.

Session

Name and location of the session we profile.

[5]:

sidsbz2 = !find sessions -maxdepth 1 -type f -exec basename {} \;
sids = [s[:-8] for s in sidsbz2]
sdir = 'sessions/'

Unbzip and untar the session.

[6]:

sidbz2 = sidsbz2[0]
sid = sidbz2[:-8]
sp = sdir + sidbz2

tar = tarfile.open(sp, mode='r:bz2')
tar.extractall(path=sdir)
tar.close()

Create a ra.Session object for the session. We do not need EnTK-specific traces so load only the RP traces contained in the EnTK session. Thus, we pass the 'radical.pilot' session type to ra.Session.

Warning: We already know we need information about pilots and tasks. Thus, we save in memory two session objects filtered for pilots and tasks. This might be too expensive with large sessions, depending on the amount of memory available.

Note: We save the ouput of ra.Session in capt to avoid polluting the notebook with warning messages.

[7]:

%%capture capt

sp = sdir + sid

session = ra.Session(sp, 'radical.pilot')
pilots = session.filter(etype='pilot', inplace=False)
tasks = session.filter(etype='task' , inplace=False)

We usually want to collect some information about the sessions we are going to analyze. That information is used for bookeeping while performing the analysis (especially when having multiple sessions) and to add meaningful titles to (sub)plots.

[8]:

sinfo = {}

sinfo.update({
 'cores_node': session.get(etype='pilot')[0].cfg['resource_details']['rm_info']['cores_per_node'],
 'pid' : pilots.list('uid'),
 'ntask' : len(tasks.get())
})

sinfo.update({
 'ncores' : session.get(uid=sinfo['pid'])[0].description['cores'],
 'ngpus' : pilots.get(uid=sinfo['pid'])[0].description['gpus']
})

sinfo.update({
 'nnodes' : int(sinfo['ncores']/sinfo['cores_node'])
})

Use ra.session.get() on the filtered session objects that contains only task entities. Then use ra.entity.timestamps() to derive the time series for each event/state of interest. We put the time series into a pandas DataFrame to make plotting easier.

[9]:

tseries = {'AGENT_SCHEDULING': [],
 'AGENT_EXECUTING': []}

for task in tasks.get():
 ts_sched = task.timestamps(event=state_sched)[0]
 ts_exec = task.timestamps(event=state_exec)[0]
 tseries['AGENT_SCHEDULING'].append(ts_sched)
 tseries['AGENT_EXECUTING'].append(ts_exec)

time_series = pd.DataFrame.from_dict(tseries)
time_series

[9]:

 Concurrency

Concurrency

RADICAL-Analytics (RA) offers a method ra.session.concurrency that returns a time series, counting the number of tasks which are matching a given pair of timestamps at any point in time. For example, a time series can show the number of concurrent tasks that were scheduled, executed or staging in/out at every point of time, during the execution of the workload.

We plot concurrency time series as a canonical line plot. We can add to the same plot multiple timeseries, showing the relation among diverse components of each RADICAL-Cybertool (RCT) system.

Prologue

Load the Python modules needed to profile and plot a RCT session.

[1]:

import os
import tarfile

import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker

import radical.utils as ru
import radical.pilot as rp
import radical.entk as re
import radical.analytics as ra

Load the RADICAL Matplotlib style to obtain viasually consistent and publishable-qality plots.

[2]:

plt.style.use(ra.get_mplstyle('radical_mpl'))

Usually, it is useful to record the stack used for the analysis.

Note: The analysis stack might be different from the stack used to create the session to analyze. Usually, the two stacks must have the same minor release number (Major.Minor.Patch) in order to be compatible.

[3]:

! radical-stack

 python : /home/docs/checkouts/readthedocs.org/user_builds/radicalanalytics/envs/stable/bin/python3
 pythonpath :
 version : 3.9.15
 virtualenv :

 radical.analytics : 1.34.0-v1.34.0@HEAD-detached-at-0b58be0
 radical.entk : 1.33.0
 radical.gtod : 1.20.1
 radical.pilot : 1.34.0
 radical.saga : 1.34.0
 radical.utils : 1.33.0

Session

Name and location of the session we profile.

[4]:

sidsbz2 = !find sessions -maxdepth 1 -type f -exec basename {} \;
sids = [s[:-8] for s in sidsbz2]
sdir = 'sessions/'

Unbzip and untar the session.

[5]:

sidbz2 = sidsbz2[0]
sid = sidbz2[:-8]
sp = sdir + sidbz2

tar = tarfile.open(sp, mode='r:bz2')
tar.extractall(path=sdir)
tar.close()

Create a ra.Session object for the session. We do not need EnTK-specific traces so load only the RP traces contained in the EnTK session. Thus, we pass the 'radical.pilot' session type to ra.Session.

Warning: We already know we need information about pilots and tasks. Thus, we save in memory two session objects filtered for pilots and tasks. This might be too expensive with large sessions, depending on the amount of memory available.

Note: We save the ouput of ra.Session in capt to avoid polluting the notebook with warning messages.

[6]:

%%capture capt

sp = sdir + sid

session = ra.Session(sp, 'radical.pilot')
pilots = session.filter(etype='pilot', inplace=False)
tasks = session.filter(etype='task' , inplace=False)

Plotting

We name some pairs of events we want to use for concurrency analysis. We use the ra.session’s concurrency method to compute the number of tasks which match the given pair of timestamps at every point in time. We zero the time of the X axes.

[7]:

pairs = {'Task Scheduling' : [{ru.STATE: 'AGENT_SCHEDULING'},
 {ru.EVENT: 'schedule_ok' }],
 'Task Execution' : [{ru.EVENT: 'rank_start' },
 {ru.EVENT: 'rank_stop' }]}

time_series = {pair: session.concurrency(event=pairs[pair]) for pair in pairs}

[8]:

fig, ax = plt.subplots(figsize=(ra.get_plotsize(212)))

for name in time_series:

 zero = min([e[0] for e in time_series[name]])
 x = [e[0]-zero for e in time_series[name]]

 y = [e[1] for e in time_series[name]]
 ax.plot(x, y, label=ra.to_latex(name))

ax.legend(ncol=2, loc='upper left', bbox_to_anchor=(-0.15,1.2))
ax.set_ylabel('Number of Tasks')
ax.set_xlabel('Time (s)')

[8]:

Text(0.5, 0, 'Time (s)')

[image: _images/concurrency_14_1.png]

The plot above shows that tasks are between ‘AGENT_SCHEDULING’ and ‘schedule_ok’ at the beginning of the execution (dark blue). Few seconds later, tasks start to be between ‘rank_start’ and ‘rank_stop’, i.e., they are scheduled and start executing. Tasks appear to have a relatively heterogeneous duration, consistent with the task runtime distribution measured in duration analysis.

Task as scheduled as soon as new resources become available, across the whole duration of the workload execution. Consistently, the total number of tasks waiting to be scheduled progressively decreases, represented by the slope of the blue line. Consistently, the number of executed tasks remain relatively constant across all the workload duration, represented by the orange line.

 API Reference

API Reference

Session

	
class radical.analytics.Session(src, stype, sid=None, _entities=None, _init=True)

	
	
__init__(src, stype, sid=None, _entities=None, _init=True)

	Create a radical.analytics session for analysis.

The session is created from a set of traces, which usually have been
produced by a Session object in the RCT stack, such as radical.pilot or
radical.entk. Profiles are accepted in two forms: in a directory, or in
a tarball (of such a directory). In the latter case, the tarball are
extracted into $TMP, and then handled just as the directory case.

If no sid (session ID) is specified, that ID is derived from the
directory name.

	
concurrency(state=None, event=None, time=None, sampling=None)

	This method accepts the same set of parameters as the ranges() method,
and will use the ranges() method to obtain a set of ranges. It will
return a time series, counting the number of tasks which are
concurrently matching the ranges filter at any point in time.

The additional parameter sampling determines the exact points in time
for which the concurrency is computed, and thus determines the sampling
rate for the returned time series. If not specified, the time series
will contain all points at which the concurrency changed. If specified,
it is interpreted as second (float) interval at which, after the
starting point (begin of first event matching the filters) the
concurrency is computed.

Returned is an ordered list of tuples:

[[time_0, concurrency_0],
 [time_1, concurrency_1],
 ...
 [time_n, concurrency_n]]

where time_n is represented as float, and concurrency_n as int.

Example:

session.filter(etype='task').concurrency(state=[rp.AGENT_EXECUTING,
 rp.AGENT_STAGING_OUTPUT_PENDING])

	
consistency(mode=None)

	Performs a number of data consistency checks, and returns a set of UIDs
for entities which have been found to be inconsistent. The method
accepts a single parameter mode which can be a list of strings
defining what consistency checks are to be performed. Valid strings are:

	state_model: check if all entity states are in adherence to the
respective entity state model

	event_model: check if all entity events are in adherence to the
respective entity event model

	timestamps: check if events and states are recorded with correct
ordering in time.

If not specified, the method will execute all three checks.

After this method has been run, each checked entity will have more
detailed consistency information available via:

entity.consistency['state_model'] (bool)
entity.consistency['event_model'] (bool)
entity.consistency['timestamps'] (bool)
entity.consistency['log'] (list of strings)

The boolean values each indicate consistency of the respective test, the
log will contain human readable information about specific consistency
violations.

	
duration(state=None, event=None, time=None, ranges=None)

	This method accepts the same set of parameters as the ranges() method,
and will use the ranges() method to obtain a set of ranges. It will
return the sum of the durations for all resulting & collapsed ranges.

Example:

session.duration(state=[rp.NEW, rp.FINAL]))

where rp.FINAL is a list of final task states.

	
ranges(state=None, event=None, time=None, collapse=True)

	Gets a set of initial and final conditions, and computes time ranges in
accordance to those conditions from all session entities. The resulting
set of ranges is then collapsed to the minimal equivalent set of ranges
covering the same set of times.

Please refer to the Entity.ranges documentation on detail on
the constrain parameters.

Setting ‘collapse’ to ‘True’ (default) will prompt the method to
collapse the resulting set of ranges.

	
rate(state=None, event=None, time=None, sampling=None, first=False)

	This method accepts the same parameters as the timestamps() method: it
will count all matching events and state transitions as given, and will
return a time series of the rate of how many of those events and/or
transitions occurred per second.

The additional parameter sampling determines the exact points in time
for which the rate is computed, and thus determines the sampling rate
for the returned time series. If not specified, the time series will
contain all points at which and event occurred, and the rate value will
only be determined by the time passed between two consecutive events.
If specified, it is interpreted as second (float) interval at which,
after the starting point (begin of first event matching the filters) the
rate is computed.

Returned is an ordered list of tuples:

[[time_0, rate_0] ,
 [time_1, rate_1] ,
 ...
 [time_n, rate_n]]

where time_n is represented as float, and rate_n as int.

The time parameter is expected to be a single tuple, or a list of
tuples, each defining a pair of start and end time which are used to
constrain the resulting time series.

The ‘first’ is defined, only the first matching event fir the selected
entities is considered viable.

Example:

session.filter(etype='task').rate(state=[rp.AGENT_EXECUTING])

	
timestamps(state=None, event=None, time=None, first=False)

	This method accepts a set of conditions, and returns the list of
timestamps for which those conditions applied, i.e., for which state
transitions or events are known which match the given ‘state’ or ‘event’
parameter. If no match is found, an empty list is returned.

Both state and event can be lists, in which case the union of all
timestamps are returned.

The time parameter is expected to be a single tuple, or a list of
tuples, each defining a pair of start and end time which are used to
constrain the matching timestamps.

If first is set to True, only the timestamps for the first matching
events (per entity) are returned.

The returned list will be sorted.

	
tzero(t)

	Setting a tzero timestamp will shift all timestamps for all entities
in this session by that amount. This simplifies the alignment of
multiple sessions, or the focus on specific events.

	
usage(alloc_entity, alloc_events, block_entity, block_events, use_entity, use_events)

	This method creates a dict with three entries: alloc, block, use.
Those three dict entries in turn have a a dict of entity IDs for all
entities which have blocks in the respective category, and foreach of
those entity IDs the dict values will be a list of rectangles.

A resource is considered:

	alloc (allocated) when it is owned by the RCT application;

	block (blocked) when it is reserveed for a specific task;

	use (used) when it is utilized by that task.

Each of the rectangles represents a continuous block of resources which
is alloced/blocked/used:

	x_0 time when alloc/block/usage begins;

	x_1 time when alloc/block/usage ends;

	y_0 lowest index of a continuous block of resource IDs;

	y_1 highest index of a continuous block of resource IDs.

Any specific entity (pilot, task) can have a set of such resource
blocks, for example, a task might be placed over multiple,
non-consecutive nodes:

	gpu and cpu resources are rendered as separate blocks (rectangles).

	Parameters

	
	alloc_entity (Entity) – Entity instance which allocates
resources

	alloc_events (list) – event tuples which specify allocation time

	block_entity (Entity) – Entity instance which blocks
resources

	block_events (list) – event tuples which specify blocking time

	use_entity (Entity) – Entity instance which uses resources

	use_events (list) – event tuples which specify usage time

Example:

usage('pilot', [{ru.STATE: None, ru.EVENT: 'bootstrap_0_start'},
 {ru.STATE: None, ru.EVENT: 'bootstrap_0_stop' }],
 'task' , [{ru.STATE: None, ru.EVENT: 'schedule_ok' },
 {ru.STATE: None, ru.EVENT: 'unschedule_stop' }],
 'task' , [{ru.STATE: None, ru.EVENT: 'exec_start' },
 {ru.STATE: None, ru.EVENT: 'exec_stop' }])

Entity

	
class radical.analytics.Entity(_uid, _profile, _details)

	
	
__init__(_uid, _profile, _details)

	
	Parameters

	
	uid (str) – an ID assumed to be unique in the scope of an RA
Session

	profile – a list of profile events for this entity

	details – a dictionary of complementary information on this entity

	
duration(state=None, event=None, time=None, ranges=None)

	This method accepts a set of initial and final conditions, interprets
them as documented in the ranges() method (which has the same
signature), and then returns the difference between the resulting
timestamps.

	
ranges(state=None, event=None, time=None, expand=False, collapse=True)

	This method accepts a set of initial and final conditions, in the form
of range of state and or event specifiers:

entity.ranges(state=[['INITIAL_STATE_1', 'INITIAL_STATE_2'],
 'FINAL_STATE_1', 'FINAL_STATE_2']],
 event=[[initial_event_1, initial_event_2]
 [final_event_1, final_event_2]],
 time =[[2.0, 2.5], [3.0, 3.5]])

More specifically, the state and event parameter are expected to be
a tuple, where the first element defines the initial condition, and the
second element defines the final condition. The time parameter is
expected to be a single tuple, or a list of tuples, each defining a pair
of start and end time which are used to constrain the resulting ranges.
States are expected as strings, events as full event tuples:

[ru.TIME, ru.NAME, ru.UID, ru.STATE, ru.EVENT, ru.MSG, ru.ENTITY]

where empty fields are not applied in the filtering - all other fields
must match exactly. The events can also be specified as dictionaries,
which then don’t need to have all fields set.

The method will:

	determine the earliest timestamp when any of the given initial
conditions have been met, which can be either an event or a state;

	determine the next timestamp when any of the given final
conditions have been met (when expand is set to False [default])
OR

	determine the last timestamp when any of the given final
conditions have been met (when expand is set to True)

From that final point in time the search for the next initial condition
applies again, which may result in another time range to be found. The
method returns the set of found ranges, as a list of [start, end] time
tuples.

The resulting ranges are constrained by the time constraints, if such
are given.

Note that with expand=True, at most one range will be found.

Setting ‘collapse’ to ‘True’ (default) will prompt the method to
collapse the resulting set of ranges.

The returned ranges are time-sorted

Example:

task.ranges(state=[rp.NEW, rp.FINAL]))
task.ranges(event=[{ru.NAME : 'exec_start'},
 {ru.NAME : 'exec_ok'}])

	
timestamps(state=None, event=None, time=None)

	This method accepts a set of conditions, and returns the list of
timestamps for which those conditions applied, i.e., for which state
transitions or events are known which match the given ‘state’ or ‘event’
parameter. If no match is found, an empty list is returned.

Both state and event can be lists, in which case the union of all
timestamps are returned.

The time parameter is expected to be a single tuple, or a list of
tuples, each defining a pair of start and end time which are used to
constrain the matching timestamps.

The returned list will be sorted.

Experiment

	
class radical.analytics.Experiment(sources, stype)

	
	
__init__(sources, stype)

	This class represents an RCT experiment, i.e., a series of RA sessions
which are collectively analyzed.

sources is expected to be a list of tuples of session source paths
pointing to tarballs or session directories. The order of tuples in the
list determines the default order used in plots etc.

The session type stype will be uniformely applied to all sessions.

	
utilization(metrics, rtype='cpu', udurations=None)

	
	return five dictionaries:

	
	provided resources

	consumed resources

	absolute stats

	relative stats

	information about resource utilization

The resource dictionaries have the following structures:

provided = {
 <session_id> : {
 'metric_1' : {
 'uid_1' : [float, list],
 'uid_2' : [float, list],
 ...
 },
 'metric_2' : {
 'uid_1' : [float, list],
 'uid_2' : [float, list],
 ...
 },
 ...
 },
 ...
}
consumed = {
 <session_id> : {
 'metric_1' : {
 'uid_1' : [float, list]
 'uid_2' : [float, list],
 ...
 },
 'metric_2' : {
 'uid_1' : [float, list],
 'uid_2' : [float, list],
 ...
 },
 ...
 },
 ...
}

float is always in tasks of resource * time, (think core-hours),
list is a list of 4-tuples [t0, t1, r0, r1] which signify at what
specific time interval (t0 to t1) what specific resources (r0 to r1)
have been used. The task of the resources are here dependent on the
session type: only RP sessions are supported at the moment where those
resource values are indexes in to the list of cores used in that
specific session (offset over multiple pilots, if needed).

utils

	
radical.analytics.get_plotsize(width, fraction=1, subplots=(1, 1))

	Sets aesthetic figure dimensions to avoid scaling in latex.

	Parameters

	
	width (float) – Width in points (pts).

	fraction (float) – Fraction of the width which you wish the figure to occupy.

	subplots (tuple) – Number of raws and number of columns of the plot.

	Returns

	fig_dim – Dimensions of figure in inches.

	Return type

	tuple

	
radical.analytics.get_mplstyle(name)

	Returns the installation path of a Matplotlib style.

	Parameters

	name (string) – Filename ending in .txt.

	Returns

	path – Normalized path.

	Return type

	string

	
radical.analytics.stack_transitions(series, tresource, to_stack)

	Creates data frames for each metric and combines them into one data frame
for alignment. Since transitions obviously happen at arbitrary times, the
timestamps for metric A may see no transitions for metric B. When using a
combined timeline, we end up with NaN entries for some metrics on most
timestamp, which in turn leads to gaps when plotting. So we fill the NaN
values with the previous valid value, which in our case holds until the next
transition happens.

	Parameters

	
	series (dict) – Pairs of timestamps for each metric of each type of
resource. E.g. series[‘cpu’][‘term’] = [[0.0, 0.0],
[302.4374113082886, 100.0], [304.6761999130249, 0.0]].

	tresource (string) – Type of resource. E.g., ‘cpu’ or ‘gpu’.

	to_stack (list) – List of metrics to stack. E.g., [‘bootstrap’, ‘exec_cmd’,
‘schedule’, ‘exec_rp’, ‘term’, ‘idle’].

	Returns

	stacked – Columns: time and one for each metric. Rows: timestamp and
percentage / amount of resource utilization for each metric at
that point in time.

	Return type

	pandas.DataFrame

	
radical.analytics.get_pilot_series(session, pilot, tmap, resrc, percent=True)

	Derives the series of pilot resource transition points from the metrics.

	Parameters

	
	session (ra.Session) – The Session object of RADICAL-Analytics created from a RCT sandbox.

	pilot (ra.Entity) – The pilot object of session.

	tmap (dict) – Map events to transition points in which a metric changes its
owner. E.g., [{1: ‘bootstrap_0_start’}, ‘system’, ‘bootstrap’]
defines bootstrap_0_start as the event in which resources pass
from the system to the bootstrapper.

	resrc (list) – Type of resources. E.g., [‘cpu’, ‘gpu’].

	percent (bool) – Whether we want to return resource utilization as percentage of
the total resources available or as count of a type of resource.

	Returns

	
	p_resrc (dict) – Amount of resources in the pilot.

	series (dict) – List of time series per metric and resource type. E.g.,
series[‘cpu’][‘term’] = [[0.0, 0.0], [302.4374113082886, 100.0],
[304.6761999130249, 0.0]].

	x (dict) – Mix and max value of the X-axes.

	
radical.analytics.get_plot_utilization(metrics, consumed, t_zero, sid)

	Calculates the resources utilized by a set of metrics. Utilization is
calculated for each resource without stacking and aggregation. May take
hours or days with >100K tasks, 100K resource items. Use get_pilot_series
and stack_transitions instead.

	Parameters

	
	metrics (list) – Each element is a list with name, metrics and color. E.g.,
[‘Bootstrap’, [‘boot’, ‘setup_1’], ‘#c6dbef’].

	consumed (dict) – min-max timestamp and resource id range for each metric and
pilot. E.g., {‘boot’: {‘pilot.0000’: [[2347.582849740982,
2365.6164498329163, 0, 167]}.

	t_zero (float) – Start timestamp for the pilot.

	sid (string) – Identifier of a ra.Session object.

	Returns

	
	legend (dict) – keys: Type of resource (‘cpu’, ‘gpu’); values: list of
matplotlib.lines.Line2D objects for the plot’s legend.

	patches (dict) – keys: Type of resource (‘cpu’, ‘gpu’); values: list of
matplotlib.patches.Rectangle. Each rectangle represents the
utilization for a set of resources.

	x (dict) – Mix and max value of the X-axes.

	y (dict) – Mix and max value of the Y-axes.

	
radical.analytics.get_pilots_zeros(ra_exp_obj)

	Calculates when a set of pilots become available.

	Parameters

	ra_exp_obj (ra.Experiment) – RADICAL-Analytics Experiment object with all the pilot entity
objects for which to calculate the starting timestamp.

	Returns

	p_zeros – Session ID, pilot ID and starting timestamp. E.g.,
{‘re.session.login1.lei.018775.0005’: {‘pilot.0000’:
2347.582849740982}}.

	Return type

	dict

	
radical.analytics.to_latex(data)

	Transforms the input string(s) so that it can be used as latex compiled plot
label, title etc. Escapes special characters with a slash.

	Parameters

	data (list or str) – An individual string or a list of strings to transform.

	Returns

	data – Transformed data.

	Return type

	list of str

	
radical.analytics.tabulate_durations(durations)

	Takes a dict of durations as defined in rp.utils (e.g.,
rp.utils.PILOT_DURATIONS_DEBUG) and returns a list of durations with their
start and stop timestamps. That list can be directly converted to a
panda.df.

	Parameters

	durations (dict) – Dict of lists of dicts/lists of dicts. It contains
details about states and events.

	Returns

	data – List of dicts, each dict containing ‘Duration Name’,
‘Start Timestamp’ and ‘Stop Timestamp’.

	Return type

	list

 Index

Index

 _
 | C
 | D
 | E
 | G
 | R
 | S
 | T
 | U

_

 	
 	__init__() (radical.analytics.Entity method)

 	(radical.analytics.Experiment method)

 	(radical.analytics.Session method)

C

 	
 	concurrency() (radical.analytics.Session method)

 	
 	consistency() (radical.analytics.Session method)

D

 	
 	duration() (radical.analytics.Entity method)

 	(radical.analytics.Session method)

E

 	
 	Entity (class in radical.analytics)

 	
 	Experiment (class in radical.analytics)

G

 	
 	get_mplstyle() (in module radical.analytics)

 	get_pilot_series() (in module radical.analytics)

 	
 	get_pilots_zeros() (in module radical.analytics)

 	get_plot_utilization() (in module radical.analytics)

 	get_plotsize() (in module radical.analytics)

R

 	
 	ranges() (radical.analytics.Entity method)

 	(radical.analytics.Session method)

 	
 	rate() (radical.analytics.Session method)

S

 	
 	Session (class in radical.analytics)

 	
 	stack_transitions() (in module radical.analytics)

T

 	
 	tabulate_durations() (in module radical.analytics)

 	timestamps() (radical.analytics.Entity method)

 	(radical.analytics.Session method)

 	
 	to_latex() (in module radical.analytics)

 	tzero() (radical.analytics.Session method)

U

 	
 	usage() (radical.analytics.Session method)

 	
 	utilization() (radical.analytics.Experiment method)

_static/comment.png

_images/concurrency_14_1.png
Number of Tasks

—— Task Scheduling —— Task Execution

2000 -

1500

1000

500

T T T T
0 1000 2000 3000

Time (s)

_static/down.png

_images/duration_36_1.png
Time (s)

I RADICAL Cybertools overhead (OVH)

I Workflow time to completion (TTX)

2048 tasks; 4 nodes 2048 tasks; 8 nodes 2048 tasks; 16 nodes 2048 tasks; 32 nodes

5000

2500

TTX OVH TTX
(d)

OVH

OVH TTX OVH TTX
Metric

(a) (b) (c)

_static/down-pressed.png

_images/duration_41_1.png
Task Runtime (s)

12.5

10.0

-
o

o
=)

N
o

T
2048;4

T T
20488 2048;16

Task;Nodes

T
2048;32

_static/file.png

_images/duration_43_0.png
Task Runtime (s)

Task Runtime (s)

Distribution of duration: t_executor_before

Ll

2048;4 2048;8 2048;16 2048;32
Task;Nodes

Distribution of duration: t_executor_after

2048;4 2048;8 2048;16 2048;32
Task;Nodes

_static/minus.png

_images/timestamps_20_1.png
Time (s)

e AGENT_SCHEDULING
AGENT_EXECUTING

3000
2000
1000
X ~le
e
0 AR
- AGS (S
T T T T T

0 500 1000 1500 2000
Number of Tasks

_images/timestamps_23_1.png
Time (s)

3000

2000

1000

e AGENT_SCHEDULING
AGENT_EXECUTING

0 500 1000 1500 2000

Number of Tasks

_images/timestamps_27_1.png
e AGENT_SCHEDULING e rank start

AGENT_EXECUTING e rank_stop
3000
= 2000
Q
£
& 1000 -~
0 -~
T T T T T
0 500 1000 1500 2000

Number of Tasks

_static/plus.png

nav.xhtml

 Table of Contents

 		
 RADICAL-Analytics

 		
 Introduction

 		
 Using RA

 		
 Fundamental Notions

 		
 Types of Analysis

 		
 Types of Measure

 		
 Installation

 		
 Virtual Environment

 		
 Troubleshooting

 		
 Plotting

 		
 Matplotlib

 		
 Loading RADICAL-Analytics Style

 		
 Default Color Cycler of RADICAL-Analytics Style

 		
 Plotting for Latex Documents

 		
 Workflow with Matplotlib and Latex

 		
 Inspection

 		
 Prologue

 		
 Single Session

 		
 Multiple Sessions

 		
 Duration

 		
 Prologue

 		
 Default Durations

 		
 Arbitrary Durations

 		
 Duration Analysis

 		
 Session

 		
 Plotting

 		
 Danger of Duration Analysis

 		
 Distribution of Durations

 		
 Resource Utilization

 		
 Prologue

 		
 Detailed Resource Utilization

 		
 Metrics

 		
 Sessions

 		
 Experiment

 		
 Plotting GPU Utilization

 		
 Plotting CPU/GPU Utilization

 		
 Aggregated Resource Utilization

 		
 Metrics

 		
 Session

 		
 Plotting CPU/GPU Utilization

 		
 Timestamps

 		
 Prologue

 		
 Event Model

 		
 Timestamps analysis

 		
 Session

 		
 Concurrency

 		
 Prologue

 		
 Session

 		
 Plotting

 		
 API Reference

 		
 Session

 		
 Entity

 		
 Experiment

 		
 utils

_images/utilization_23_1.png
CPUs

GPUs

Bootstrap
2048 Tasks - 4 Nodes

0 2000 4000 6000

(a)

Warmup

Schedule

2048 Tasks - 8 Nodes

0

1000 2000 3000
Time (s)
(c)

(b)

© ExecRP @D Exec Cmd ¢ Cooldown

2048 Tasks - 16 Nodes

0 400 800 1200

450
300
150

2048 Tasks - 32 Nodes

0 250 500 750

(d)

_static/up.png

_images/utilization_29_1.png
CPU (%)

GPU (%)

bootstrap
El exec-cmd

100 ~

50 o

0 -
100 ~

50 o

200

[0 schedule [term
[exec-rp
2048 Tasks - 32 Nodes

400 600

time (s)

800

idle

_images/timestamps_29_1.png
e AGENT_SCHEDULING e rank_start

AGENT_EXECUTING e rank_stop
°
15
°
° °
Z 10 4 e ° *e
g ° ® oo e
)
g °
5 °
°
o888
0—.:...00.00.00000
T T T
20 25 30

Number of Tasks

_images/utilization_21_1.png
GPUs

Warmup Schedule @ Exec RP @ Exec Cmd